建筑结构

2022, v.52;No.576(12) 56-63+108

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

低周往复作用下某新型装配式框架节点抗震性能试验研究
Experimental study on seismic performance of a new type of prefabricated frame joint under low-cycle reciprocating action

沈华;翁大根;张瑞甫;葛庆子;王庆华;
SHEN Hua;WENG Dagen;ZHANG Ruifu;GE Qingzi;WANG Qinghua;College of Civil Engineering, Nantong Vocational University;College of Civil Engineering, Tongji University;Sichuan Institute of Building Research;

摘要(Abstract):

设计制作了一种新型H型钢削弱装配式框架节点(简称SPC节点)和对应相同尺寸的现浇节点,采用低周往复加载试验,研究对比了两种节点的抗震性能。重点分析了节点的破坏模式、裂缝分布、滞回曲线、骨架曲线、峰值延性、能量耗散系数、循环刚度和强度退化、截面弯矩转角、钢筋应变和型钢应变。结果表明:SPC节点的裂缝分布与现浇节点相近,但最大裂缝宽度得到有效控制。SPC节点滞回曲线更饱满,且随加载位移增加,无明显刚度退化。与现浇节点相比,SPC节点的承载力和延性得到显著改善。通过两种节点能量耗散系数的对比,结果表明SPC节点具有更好的强震耗能能力。强度和刚度受循环加载影响更小,故SPC节点的抗震性能更稳定。SPC节点梁端部截面具有更强的弯矩承载力和转动能力。同时,给出的SPC节点设计方法,能有效达成设计目标和实现“强柱弱梁”的要求。
A new type of H-beam weakened prefabricated frame joint(SPC joint) and a cast-in-place joint corresponding to the same size were designed and fabricated. The seismic performance of the two joints was studied and compared by low-cycle reciprocating loading test. The failure mode, crack distribution, hysteresis curve, skeleton curve, peak ductility, energy dissipation coefficient, cyclic stiffness and strength degradation, section bending moment angle, steel bar strain and section steel strain were analyzed with emphasis. The results show that the crack distribution of the SPC joint is similar to that of the cast-in-place joint, but the maximum crack width is effectively controlled. The hysteresis curve of the SPC joint is fuller, and with the increase of loading displacement, there is no obvious stiffness degradation. The bearing capacity and ductility of SPC joints are significantly improved compared to cast-in-place joints. By comparing the energy dissipation coefficients of the two joints, the results show that the SPC joint has better energy dissipation capacity for strong earthquakes. The strength and stiffness are less affected by cyclic loading, so the seismic performance of the SPC joint is more stable. The end section of the SPC joint beam has stronger bending moment bearing capacity and rotational capacity. At the same time, the given SPC joint design method can effectively achieve the design goals and the requirements of "strong columns and weak beams".

关键词(KeyWords): 装配式结构;框架节点;裂缝分布;抗震性能;弯矩承载力;转动能力
prefabricated structure;frame joint;crack distribution;seismic performance;bending moment bearing capacity;rotational capacity

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(51978525);; 江苏高校青蓝工程中青年学术带头人资助项目(2021);; 南通市科技计划项目(MS22020025);; 南通职业大学自然科学重点课题(2020A-2)

作者(Authors): 沈华;翁大根;张瑞甫;葛庆子;王庆华;
SHEN Hua;WENG Dagen;ZHANG Ruifu;GE Qingzi;WANG Qinghua;College of Civil Engineering, Nantong Vocational University;College of Civil Engineering, Tongji University;Sichuan Institute of Building Research;

DOI: 10.19701/j.jzjg.20210943

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享